Sepax-2 cell therapy device: study evaluating reproducibility of concentration of thawed hematopoietic progenitor cells | Journal of Transformational Medicine

  • Duarte RF, Labopin M, Bader P, Basak GW, Bonini C, Chabannon C, et al. Indications for hematopoietic stem cell transplantation for hematology, solid tumors and immune disorders: current practice in Europe, 2019. Bone marrow transplantation. 2019; 54 (10): 1525–1552.

    Article – Commodity
    PubMed

    Google Scholar

  • Shu Z, Heimfeld S, Gao D. Hematopoietic SCT with cryopreserved grafts: adverse reactions after transplantation and antifreeze removal prior to infusion. Bone marrow transplant. 2014; 49 (4): 469–76.

    Article – Commodity
    CAS
    PubMed

    Google Scholar

  • Worel N, Shaw BE, Aljurf M, Koh M, Seber A, Weisdorf D et al. Changes in hematopoietic cell transplantation practices in response to COVID-19: a survey from the Global Network for Blood and Marrow Transplantation. Cell transplant there. 2021; 27 (3): 270. e1–.e6.

    Article – Commodity

    Google Scholar

  • Huvarová L, Kořístek Z, Jelínek T, Černá L, Smejkalová J, Navrátil M et al. Washing implants with Sepax 2 reduces the incidence of side effects associated with autologous implants and increases patient comfort. Transfusion. 2021.

  • Calmels B, Drezet A, Huynh C, Autret A, Stoppa AM, Bouabdallah R, et al. Automated washing of hematopoietic stem cell grafts after thawing does not impair the graft. Bone marrow transplant. 2014; 49(8): 1127-118.

    Article – Commodity
    CAS
    PubMed

    Google Scholar

  • Lu M, Lezzar DL, Vörös E, Shevkoplyas SS. Traditional and emerging technologies for dialysis and volume reduction of blood products. J Blood Med. 2019; 10:37 – 46.

    Article – Commodity
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Mfarrej B, Lemarié C, Granata A, Pagliardini T, Malenfant C, Lignée P, et al. Conservation of the related versus unrelated allogeneic HPC graft: a single central experience in the context of the global COVID-19 pandemic. Bone marrow transplant. 2021.

  • Brocklebank AM, Sparrow RL. CD34+ cell counts in cord blood: a variation of a single-platform flow cytometry method based on the ISHAGE portal strategy. Cell measurement. 2001; 46 (4): 254–61.

    Article – Commodity
    CAS
    PubMed

    Google Scholar

  • Velier M, Chateau AL, Malenfant C, Ouffai S, Calmels B, Chabannon C et al. Validation of a semi-automated device for standardization of colony-forming unit (CFU) quantification on hematopoietic stem cell products. Cell therapy. 2019; 21 (8): 820-3.

    Article – Commodity
    PubMed

    Google Scholar

  • Altman DJ, Bland JM. Measurement in medicine: an analysis of method comparison studies. J Royal Stat Society: Ser D (Statistical). 1983; 32 (3): 307-17.

    Google Scholar

  • Ball O, Robinson S, Bure K, Brindley DA, McCall D. Bioprocessing automation in cell therapy manufacturing: results of a special interest group automation workshop. Cell therapy. 2018; 20 (4): 592-9.

    Article – Commodity
    PubMed

    Google Scholar

  • Scerpa MC, Daniele N, Landi F, Caniglia M, Cometa AM, Ciammetti C, et al. Automated washing of human progenitor cells: assessment of apoptosis and cell necrosis. Transphos Med. 2011; 21 (6): 402-7.

    Article – Commodity
    CAS
    PubMed

    Google Scholar

  • Sanchez-Salinas A, Cabañas-Perance V, Blanquer M, Magado MJ, Insausti CL, Monserrat J, et al. The auto-washing method for removing dimethyl sulfoxide in autologous hematopoietic stem cell transplantation minimizes infusion-related adverse effects. Transfusion. 2012; 52 (11): 2382-6.

    Article – Commodity
    PubMed

    Google Scholar

  • 386 – trypan. Blue viability as a proxy for CD34-specific viability of frozen and thawed hematopoietic progenitor cell products to meet FACT and AABB criteria. Biol blood marrow transplant. 2018; 24 (3): Supplement: S313-S4.

    Google Scholar

  • Marinelli Busilacchi E, Costantini A, Mancini G, Bencivenga R, Olivieri J, Battaglini G et al. A novel method for assessing the viability of cryopreserved CD34+ hematopoietic stem cells for autologous transplantation. Transfusion. 2020; 60 (7): 1529–35.

    Article – Commodity
    CAS
    PubMed

    Google Scholar

  • Hornberger K, Yu G, McKenna D, Hubel A. Cryopreservation of hematopoietic stem cells: emerging assays, antifreeze-protective agents, and technology to improve outcomes. Transphos Med Heamother. 2019; 46 (3): 188-96.

    Article – Commodity
    PubMed
    PubMed Central

    Google Scholar

  • Calmels B, Lemarié C, Esterni B, Malugani C, Charbonnier A, Coso D, et al. The incidence and severity of adverse events after infusion of autologous hematopoietic cells is related to the amount of granulocytes in the apheresis product. Transfusion. 2007; 47 (7): 1268–75.

    Article – Commodity
    PubMed

    Google Scholar

  • Milone G, Mercurio S, Strano A, Leotta S, Pinto V, Battiato K, et al. Adverse events after infusion of cryopreserved hematopoietic stem cells depend on the non-mononuclear cells in the loaded suspension and the age of the patient. Cell therapy. 2007; 9 (4): 348-55.

    Article – Commodity
    CAS
    PubMed

    Google Scholar

  • Gratama JW, Kraan J, Keeney M, Sutherland DR, Granger V, Barnett D. Validation of a single-platform ISHAGE method for CD34(+) enumeration of hematopoietic stem and progenitor cells in an international multicenter study. Cell therapy. 2003; 5 (1): 55-65.

    Article – Commodity
    CAS
    PubMed

    Google Scholar

  • Whitby A, Whitby L, Fletcher M, Riley JT, Sutherland DR, Kenny M, et al. ISHAGE PROTOCOL: ARE WE DOING IT RIGHT? Measurement of the B-cell Clin Cytom. 2012; 82 (1): 9-17.

    Article – Commodity
    PubMed

    Google Scholar

  • Abonnenc M, Pesse B, Tissot JD, Barelli S, Lion N. Automated washing of thawed hematopoietic cell grafts: a preclinical evaluation. Fox Sang. 2017.

  • Stewart MD, Ken A, Butterfield LH, Levine BL, Thompson B, Shaw Y, et al. Accelerate the development of innovative cell therapy products for cancer treatment. Cell therapy. 2020; 22 (5): 239–46.

    Article – Commodity
    PubMed

    Google Scholar

  • Li A, Kusuma GD, Driscoll D, Smith N, Wall DM, Levine BL et al. Advances in automated cell washing and concentration. Cell therapy. 2021.

  • Güven S, Karagianni M, Schwalbe M, Schreiner S, Farhadi J, Bula S et al. Validation of an automated procedure for the isolation of cells derived from human adipose tissue using Sepax® technology. Tissue engineering methods part c. 2012; 18(8): 575-82.

    Article – Commodity
    PubMed
    PubMed Central

    Google Scholar

  • Van Schalkwyk MCI, Van der Stegen SGC, Bouchard Carter L, Graves H, Papa S, Parente Pereira AC, et al. Development and validation of a good manufacturing process for interleukin-4-driven expansion of cytokine receptor-expressing cytokine T-cells. cells. 2021; 10 (7).

  • KS, A S. Cell and Gene Therapy Insights | The Long Road to Affordability: A Commodity Cost Analysis of the Autonomous CAR-T Process. Insights into cell and gene therapy. 2018; 4 (11): 1105-16.

  • Lin Z, Trieu H, Miller M. Development of a closed washing/formulation process for a CAR-T drug product. Paris: Cell Therapy;: ISCT. 2021. p. s 37.

    Google Scholar

  • Leave a Comment